Today I wondered what would happen if I took the magnitude spectrum of a wavetable, and used as as the input of the padsynth algorithm.

Below are the results, played in sequence. The first track is the wavetable itself (from the architecture waveform collection) played in an oscillator. The subsequent clips use wavetables generated from the padsynth algorithm, while increasing the "bandwidth" parameter for the algo.

The character of the original waveform seems to be fairly intact. I'll have to do a few more tests on other waveforms, but I'm hoping that remains true.

As the name implies, the nature of the padsynth algorithm a dense sound ideal for pads. These sounds sound like I'm layering a bunch of detuned oscillators together, but really it's just one wavetable that's perfectly loopable! The larger the bandwidth, the more detuned the sound. I think there's something interesting about the smaller bandwidths though, like it's adding detail and grit to wavetable spectrum rather than turning it into a chorusing sound.

Thankfully, spectrums appear to be predictable, more or less sounding like layered versions of the initial wavetable.

A neat trick to explore more, and possibly automate a little bit better.

Such a big and pretty sound the padsynth algorithm. Here's 5 voices layered together using same padsynth wavetable.

Sign in to participate in the conversation

Welcome to, an instance for discussions around cultural freedom, experimental, new media art, net and computational culture, and things like that.

<svg xmlns="" id="hometownlogo" x="0px" y="0px" viewBox="25 40 50 20" width="100%" height="100%"><g><path d="M55.9,53.9H35.3c-0.7,0-1.3,0.6-1.3,1.3s0.6,1.3,1.3,1.3h20.6c0.7,0,1.3-0.6,1.3-1.3S56.6,53.9,55.9,53.9z"/><path d="M55.9,58.2H35.3c-0.7,0-1.3,0.6-1.3,1.3s0.6,1.3,1.3,1.3h20.6c0.7,0,1.3-0.6,1.3-1.3S56.6,58.2,55.9,58.2z"/><path d="M55.9,62.6H35.3c-0.7,0-1.3,0.6-1.3,1.3s0.6,1.3,1.3,1.3h20.6c0.7,0,1.3-0.6,1.3-1.3S56.6,62.6,55.9,62.6z"/><path d="M64.8,53.9c-0.7,0-1.3,0.6-1.3,1.3v8.8c0,0.7,0.6,1.3,1.3,1.3s1.3-0.6,1.3-1.3v-8.8C66,54.4,65.4,53.9,64.8,53.9z"/><path d="M60.4,53.9c-0.7,0-1.3,0.6-1.3,1.3v8.8c0,0.7,0.6,1.3,1.3,1.3s1.3-0.6,1.3-1.3v-8.8C61.6,54.4,61.1,53.9,60.4,53.9z"/><path d="M63.7,48.3c1.3-0.7,2-2.5,2-5.6c0-3.6-0.9-7.8-3.3-7.8s-3.3,4.2-3.3,7.8c0,3.1,0.7,4.9,2,5.6v2.4c0,0.7,0.6,1.3,1.3,1.3 s1.3-0.6,1.3-1.3V48.3z M62.4,37.8c0.4,0.8,0.8,2.5,0.8,4.9c0,2.5-0.5,3.4-0.8,3.4s-0.8-0.9-0.8-3.4C61.7,40.3,62.1,38.6,62.4,37.8 z"/><path d="M57,42.7c0-0.1-0.1-0.1-0.1-0.2l-3.2-4.1c-0.2-0.3-0.6-0.5-1-0.5h-1.6v-1.9c0-0.7-0.6-1.3-1.3-1.3s-1.3,0.6-1.3,1.3V38 h-3.9h-1.1h-5.2c-0.4,0-0.7,0.2-1,0.5l-3.2,4.1c0,0.1-0.1,0.1-0.1,0.2c0,0-0.1,0.1-0.1,0.1C34,43,34,43.2,34,43.3v7.4 c0,0.7,0.6,1.3,1.3,1.3h5.2h7.4h8c0.7,0,1.3-0.6,1.3-1.3v-7.4c0-0.2,0-0.3-0.1-0.4C57,42.8,57,42.8,57,42.7z M41.7,49.5h-5.2v-4.9 h10.2v4.9H41.7z M48.5,42.1l-1.2-1.6h4.8l1.2,1.6H48.5z M44.1,40.5l1.2,1.6h-7.5l1.2-1.6H44.1z M49.2,44.6h5.5v4.9h-5.5V44.6z"/></g></svg>