Follow

Looping animation made by sequencing key frames in the bifurcation diagram of the logistic map x := a x (1 - x), which is conjugate to the Mandelbrot set's quadratic polynomial x := x^2 + c.

The left hand edge of each keyframe is the parabolic root of a hyperbolic component (using jargon related to the Mandelbrot set). This can be found by Newton's method in 2 variables, starting from a nucleus of the relevant period (the animation starts 1, 2, 4, 8). The nucleus can be found by Newton's method in 1 variable, starting from a guess coordinate found by tracing external rays.

The right hand edge of each keyframe is a tuned / renormalized copy of the tip of the Mandelbrot antenna (c = -2 or a = 4). I found these coordinates by tracing external rays in the Mandelbrot set and then mapping c to a.

The top and bottom edges of the keyframes were found by iterating at the right hand edge and finding the two x that are closest (but not equal to) the starting point (the critical point x = 0.5). I think (not sure) these are at iteration numbers P and 2P, where P is the period of the "owning" hyperbolic component.

Interpolation between keyframes was done using Poincaré half-plane geodesics:
mathr.co.uk/blog/2011-12-26_po

Sign in to participate in the conversation
lurk.org

Welcome to post.lurk.org, an instance for discussions around cultural freedom, experimental, new media art, net and computational culture, and things like that. This is part of a family of services that include mailing lists, group chat, and XMPP.